
What is FAUCET?
Brad Cowie

University of Waikato
New Zealand

History Lesson
● Brief history on SDN activities in New Zealand

RouteFlow (Dec 2011 - April 2016)
● SDN work at the time was focused on the data centre
● RouteFlow was SDN for the WAN
● Push routes from Linux routing table onto OpenFlow switches
● Let us turn a set of switches into distributed router
● Core technology behind

○ Project W
○ VANDERVECKEN
○ CARDIGAN

● Many issues
○ Too many components, very complicated to debug
○ Prone to crashes due to race conditions

Valve (March 2014 - September 2016)
● “Hello world” app for SDN is a layer 2 learning switch
● Valve was a layer 2 learning switch with useful features

○ Simple YAML configuration file
○ VLAN support
○ Access Control Lists (ACLs)
○ Multi-datapath support
○ Statistics

● Written as research project at WAND Group, University of Waikato
● Very small and simple, ~500 lines of code
● Not production ready

○ MAC learning rules don’t expire

FAUCET (August 2015 - Present)
● REANNZ took Valve and built FAUCET
● Goals:

○ Robust software
○ Reliable hardware
○ Extensive production testing
○ Operators comfortable using it
○ Interoperate with existing tools

● 2 network engineers in 2 months produced initial version
● Deployed FAUCET on their office network

○ Office network is still FAUCET powered to this day

● FAUCET codebase has become a collaborative effort
○ REANNZ, Google, University of Waikato, Victoria University of Wellington, etc...

Features
● Lightweight Open Source SDN controller
● OpenFlow v1.3
● Production quality
● Well tested
● Multi-vendor
● Supports Layer 2 and Layer 3
● Policy driven approach to extensibility
● Installs in <30 seconds

Architecture overview

Design philosophy - simplicity
● Easy to deploy
● Easy to operate
● Easy to modify
● Easy to upgrade

Design philosophy - SDN
● Move control plane implementation from hardware to general purpose

compute
○ Implement forwarding & routing in language that’s easy to read & modify
○ Use open standard to push rules to datapath

● Portable across many different vendors without drivers
○ Work with vendors to support the FAUCET packet processing pipeline

● We follow the OpenFlow 1.3 standard
○ No vendor extensions

Throw out the kitchen sink
● FAUCET is intentionally small

○ ~10,000 lines of code
○ ~5,000 lines of tests

● Implement useful primitives in FAUCET that can be built on top of
○ Forwarding, VLANs, ACLs, L3 FIB

● Implement some additional protocols for interop
○ BGP, Stacking, LACP, ARP & IPv6 ND

● Leave protocols modular so they are only turned on when configured

Controller state
● Persistent state is stored in configuration files
● Everything else is ephemeral

○ L2 MAC learning
○ Next hop resolution

● If in doubt, throw it out
● High Availability without a tightly-coupled cluster

Configuration
● YAML-based configuration file
● Represents topology & features of network
● FAUCET is idempotent

○ Give 2 controllers same configuration and they will configure the network the same

● Working on adding an abstraction layer on top for real time changes
● Change configuration file then signal FAUCET to reload
● FAUCET will compute diff between configuration and apply to network

Configuration Example
vlans:

office:
 vid: 100
 description: "office network"
 faucet_vips: ['10.0.100.254/24']
dps:

sw1:
 dp_id: 0x1
 hardware: "Open vSwitch"
 interfaces:
 1:
 description: "host1 container"
 native_vlan: office
 2:
 description: "host2 container"
 native_vlan: office

OpenFlow processing pipeline

Faucet pipeline

Testing
● Testing allows us to change code without breaking features
● Test suite includes

○ Integration tests
○ Unit tests

Unit tests
● Helps developers test small pieces of code for correctness
● Easy to write
● Tests run very quickly
● >90% test coverage

Integration tests
● Test entire system
● Boot up many different network scenarios in parallel
● Ensure features work and packets correctly move through network
● Runs against Open vSwitch and real hardware

○ Lets us prequalify devices for FAUCET support

● Much slower to run
○ 30 - 60 minutes

Monitoring
● To be considered operational need to satisfy the needs of network engineers
● Visibility over network
● Monitoring and control are separate network functions
● FAUCET controls the network (read/write)
● GAUGE monitors the network (read-only)

Network visibility - GAUGE
● Fetches metrics from OpenFlow v1.3 dataplanes

○ MAC learning information
○ Port state
○ Port counters (bytes in/out, packets in/out, errors)

● Pushes metrics to a database
○ InfluxDB
○ Prometheus

● Can use fctl tool to query database manually
● Can use grafana to make real-time dashboards

Network visibility - FAUCET
● FAUCET controller also exports metrics to prometheus
● Allows us to instrument control plane

○ Learning capacity
○ CPU/Memory usage
○ Inventory

Network visibility

Controller visibility

Policy
● Network policy is implemented with FAUCET ACLs
● A FAUCET ACL has a match and action

○ Matches anything OpenFlow can
○ Action can be DROP, ALLOW, OUTPUT, MODIFY

Policy use cases
● Port-based ACLs

○ DHCP and DHCPv6 spoofing protection
○ IPv6 Router Advertisement Guard
○ BCP38
○ NFV offload, output 802.1x EAPOL frames to NAC

● VLAN-based ACLs
○ Drop anything other than IPv6 ethertype on IPv6-only network

● IVR ACLs
○ Limit traffic between VLANs

● PBR ACLs
○ Assign client subnets to a specific upstream

Policy example
● IPv6 Router Advertisement Guard

- rule:
 dl_type: 0x86dd # ipv6
 nw_proto: 58 # icmpv6
 icmpv6_type: 134 # router advertisement
 actions:
 allow: 0 # drop

Use cases
● Enterprise

○ REANNZ
○ WAND Network Research Group
○ University of Waikato

● Security
○ CyberReboot Poseidon

● IXP
○ University of Tokyo
○ Osaka NSPIXP-3
○ TouIX

● HPC
○ SC18

What makes an enterprise network?
● Connects users to services and Internet
● Lots of copper ports and many wireless APs
● Hard to design a standard build-out

○ Too many special cases
○ Odd building layouts

● Often have no control over devices at the access layer
○ BYOD

● Network design has to scale to support all these edge-cases

Problems in enterprise networks
● Hand configuration….
● Configuration automation isn’t always the answer

○ Multi-vendor is difficult
○ Can’t define our own learning behaviour

● We want Devops for networks
○ Faucet: Deploying SDN in the Enterprise

Using OpenFlow and DevOps for rapid development
https://queue.acm.org/detail.cfm?id=3015763

https://queue.acm.org/detail.cfm?id=3015763

Devops approach to networking
● Zero Touch Networking (ZTN)

○ gNMI

● Automate network behaviour
● Capture network definition in version control
● Run network scenarios with automated test suite
● Continuous Integration

○ Push on green
● Automate hardware purchasing

WAND Network

AS 134227
192.107.171.0/24
192.107.172.0/24
2001:df2:9d00::/45
248 OpenFlow ports

WAND Network v2

Trying out FAUCET

Learn more https://docs.faucet.nz

$ docker run -d --name faucet \
 -v /etc/ryu/faucet/:/etc/ryu/faucet/ \
 -v /var/log/ryu/faucet/:/var/log/ryu/faucet/ \
 -p 6653:6653 -p 9244:9244 \
 faucet/faucet

$ echo "deb https://packagecloud.io/faucetsdn/faucet/ubuntu/bionic main" \
 | sudo tee /etc/apt/sources.list.d/faucet.list
$ curl -L https://packagecloud.io/faucetsdn/faucet/gpgkey \
 | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install faucet gauge

or

Trying out FAUCET
● Watch me configure a network after coffee
● Try for yourself in Hands on Hacking session this afternoon

Questions?

Learn more https://faucet.nz

Follow us on Twitter @faucetsdn

